在实际的快速路交通流系统中,入口匝道的流量和快速路主路的速度都是受限的,因此在对快速路交通流进行控制时考虑这些限制十分必要.基于迭代学习控制的快速路入口匝道控制是近年来快速路控制领域的一个研究热点,然而,至今为止还没有在输入和状态同时受限情况下的相关收敛性分析.本文首先介绍了快速路交通流模型,并将交通密度控制转化为输出跟踪问题;然后通过严格的数学分析证明了在入口匝道流量受限和主路速度受限的情况下,基于迭代学习控制的入口匝道控制仍然能保证交通流密度收敛于期望密度;最后通过仿真研究验证了该方法在受限情况下能达到很好的控制效果.
In actual freeway traffic system,the on-ramp flow and the mainline speed are constrained.Therefore,it is necessary to take these constraints into consideration in controlling the freeway traffic flow.ILC based freeway ramp metering has become a research hotspot these years,however,there is no corresponding convergence analysis under input and state constraints.In this paper,the traffic density control problem is first formulated into an output tracking problem.Next,with rigorous analysis,the ILC based freeway ramp metering is able to guarantee the asymptotic convergence of the traffic density to the desired one,despite the presence of velocity and input constraints.The control performance under constraints is further verified by intensive simulations.