将二维Lorentz空间∧2^p(ω)推广到二指标二维Lorentz空间∧2^p(ω),给出了当0<γ1,γ2<∞,0<p,q<∞时,∧^γ1(u)包含∧2^p^γ2(ω2),∧2^p^γ1(ω1)包含∧2^p^γ2(ω2),2^p^γ1(ω1)包含∧^γ2(v)的充要条件,以及当0<γ1,0<p,q<∞时,∧^p·γ1(u)包含∧2^p·∞(ω2),∧2^p·γ1(ω1)包含∧^q·∞(v)的充要条件,研究了二指标二维Lorentz空间和混合Lorentz空间的嵌入关系,并且给出了||·||∧2^p·q(ω)是拟范数的充要条件等结论。
Two dimension Lorentz spces ∧2^p(ω)are generalized to twoindexes two dimension Lorentz spaces∧2^p·q(ω).Necessary and sufficient conditions are obtained as ∧^γ1(u)belong to ∧2^p·γ2(ω2),∧2^p·γ1(ω1) belong to ∧2^p·γ2(ω2),∧2^p·γ1(ω1) belong to ∧^γ2(v),when0〈γ1,γ2〈∞,0〈p,p〈∞ and as ∧^p·(v) belong to ∧2^q·∞(ω2),∧2^p·γ1(ω1)belong to ∧2^q·∞(ω2),∧2^p·γ1(ω1) belong to ∧^q·∞(v) when 0〈γ1,0〈p,q〈∞.Moreover,embedding relation between two dimension spaces and mixde Lorentz spaces are studied.Furthermore,the necessary and sufficient conditions are contained for∧ 2^p·q(ω)to be quasinormable and so on.