由于气体的湿度对分子振动弛豫有着较大的影响,利用石英音叉增强型光声光谱(QEPAS)技术作为甲烷气体传感,在实际应用中,空气的水气浓度变化将会使光声测量气体浓度的信号强度发生变化。实验中采用鼓泡法结合湿度计来改变探测气体中的湿度,测量了常压下1.653μm波长处甲烷的二次谐波信号,系统地研究了探测气体中水气浓度的变化对石英音叉Q值、共振频率f0等参数的影响。实验结果表明,水气对基于QEPAS技术甲烷气体传感器的实际应用有着很大的影响,主要表现在甲烷分子振动弛豫和探测系统性能两个方面。当实际大气中绝对湿度为2.34%时,获得的系统最小可探测质量浓度为0.57mg/m3。
The accuracy of measurement is affected by the variation of water vapor concentration when a quartz enhanced photo-acoustic spectroscopy (QEPAS) is used for real-time trace-gas monitoring. A QEPAS based methane sensor is developed at 1. 653 ~m and the influence of water vapor on the performances of QEPAS methane sensor including second harmonic signal, resonance frequency, Q factor are investigated experimentally. Measurements are carried out under different absolute humidities which are obtained by bubbling method combined with hygrometer at atmosphere pressure. The results suggest that the water vapor could impact both on relaxation time of methane and the parameters of quarts tuning fork in practical application. The smallest detective mass concentration of the sensor is found to be about 0.57 mg/m3 at different atmosphere vressures with an absolute humidity of 2.34 %.