设奇素数p≥11,q=2(p-1),A为模p的Steenrod代数.证明了在Adams谱序列中,b1k0∈ExtyA^4,p2q+2pq+q是永久循环且不是dT边缘,从而收敛到π*V(1)中的非零元.
For odd primes p ≥ 11, q = 2(p - 1 ) and A be the mod p Steenrod algebra. It is proved that b1k0∈ ExtA^4,p^2q+2pq+q (H^*V( 1 ), Zp) is a permanent cycle and cannot be hit by any differential in the Adams spectral sequence, i.e. b1k0 converges to a nontrivial element in or.V( 1 ).