基于美国国家环境预报中心/美国国家大气研究中心以及欧洲中期天气预报中心发布的再分析资料,构建了考虑时间滞后情况下的全球温度场关联矩阵,分析了时间滞后对全球温度场关联性时空特征的影响.结果表明:随着滞后时间的增加,全球温度场的关联性总体呈逐渐减弱的趋势,但对应不同的滞后时间其规律也不同,在滞后1—30d的情况下,可根据全球平均关联系数C—glb的下降快慢大体将其划分为滞后1—7d,8—20d和21—30d三个阶段.在滞后8—20d的情况下,C—glb表现出明显的不稳定特征,这从另一角度解释了10—30d延伸期预报困难的可能原因.温度场关联系数的空间分布没有随滞后时间的增加发生明显变化,合成分析表明其差值的空间分布总体呈沿纬向的带状分布,北半球中纬度的亚洲大陆大部以及赤道中东太平洋地区的关联系数随滞后时间的变化趋势分别与同纬度的其他地区相反.
With time delay under consideration,temperature correlation matrixes are constructed based on the reanalysis of temperature data provided by National Centers for Environmental Prediction/National Center for Atmospheric Research and European Centre for Medium-Range Weather Forecasts.Results indicate that the correlation of global temperature decreases with lag time,and the rate is dependent on time lag.We divide the lag time (1—30 d) into three segments,i.e.,1—7 d,8—20 d and 21—30 d according to the decrease rate of global average correlation coefficient glb.When the lag time is in a specific interval (8—20 d),glb is unstable,which may explain the difficulty in long range weather forecast of 10—30 d.The spatial distribution of the global temperature correlation keeps stable for different lag times,while the numerical change shows zonal distribution on the whole,and that the most of Asia and the equatorial central and eastern Pacific show countertrend to other parts of similar latitudes.