有 Pad é approximants 的联合 Adomian 分解方法(ADM ) ,我们解决二个微分差别的方程(DDE ) :相对论的 Toda 格子方程和修改 Volterra 格子方程。在符号的计算枫树的帮助下, ADM-Pad é技术获得的结果与独自使用 ADM 获得的那些相比。数字结果比使用 ADM 证明 ADM-Pad é技术在集中的更大的领域与更快的集中率和更高的精确性和亲戚给近似答案。
Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.