位置:成果数据库 > 期刊 > 期刊详情页
Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • 相关基金:Sponsored by the National Natural Science Foundation of China(Grant No.61405041,61571145); the Key Program of Heilongjiang Natural Science Foundation(Grant No.ZD201216); the Program Excellent Academic Leaders of Harbin(Grant No.RC2013XK009003); the China Postdoctoral Science Foundation(Grant No.2014M551221); the Heilongjiang Postdoctoral Science Found(Grant No.LBH-Z13057)
中文摘要:

In conventional linear spectral mixture analysis model,a class is represented by a single endmember.However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results. Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on. Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library. It is essentially the same as multiple endmember spectral unmixing. OMP( orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency. However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one( ANC and ASC),leading to undesirable unmixing results. In order to solve these issues,this paper presents an improved OMP algorithm( fully constraint OMP,FOMP) for multiple endmember hyperspectral sparse unmixing. The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability.The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error( RMSE) to avoid over-fitting,finally pixels are unmixed by their optimal endmember set. The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis( s SMA),and has a strong anti-noise performance. It proves that multiple endmember spectral mixture analysis is more reasonable.

英文摘要:

In conventional linear spectral mixture analysis model,a class is represented by a single endmember.However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results. Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on. Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library. It is essentially the same as multiple endmember spectral unmixing. OMP( orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency. However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one( ANC and ASC),leading to undesirable unmixing results. In order to solve these issues,this paper presents an improved OMP algorithm( fully constraint OMP,FOMP) for multiple endmember hyperspectral sparse unmixing. The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability.The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error( RMSE) to avoid over-fitting,finally pixels are unmixed by their optimal endmember set. The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis( s SMA),and has a strong anti-noise performance. It proves that multiple endmember spectral mixture analysis is more reasonable.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739