稀疏编码的概念源于视神经网络的研究,是对只有一小部分神经元同时处于活跃状态的多维数据的神经网络的表示方法。稀疏编码理论在视神经细胞的响应特性和外部环境刺激的统计特性之间建立一种科学的数量联系,逐渐成为了一种有效理解人类神经系统信息加工机制的理论工具,在盲源信号分离、语音信号处理、图像特征提取、自然图像去噪、以及模式识别等方面取得了许多成果,具有重要的实用价值。
The concept of sparse coding comes from the study of visual neural network, it is a neural network method for finding a representation of multidimensional data in which each of the components of the representation is only rarely significantly active. Sparse code theory establishes a scientific quantitative link between the information processing mechanisms of visual neurons and the statistics of input visual stimuli, and provides an efficient tool to understand the neural information processing mechanisms. It has been applied in blind source separation,speech signal separation,image feature extraction, natural image denoising and pattern recognization,and it has achieved many results and has important practical value.