视觉秘密共享方案(Visual Secret Sharing Scheme,VSSS)将秘密图像的内容分享到n张分存图上,当得到任意t张分存图时,透过分存图的直接叠加就可以自然显现出秘密图像信息,如果小于t张分存图,则人眼就无法看到秘密图像的任何信息,这就称为(t,n)-阈值视觉秘密分享方案.视觉秘密共享技术最大的优点在于重构秘密图像时不需要复杂的运算,也不需要密码学知识.在没有计算机环境中,这不失为是一个简单又安全的秘密分享方式.在传统的(t,n)-阈值视觉秘密分享的方案中,相关学者只是针对每一个特定的t值来提出一种密钥分享方案,然而却没有分析这一个设计法是否为最佳的设计.为了改善上述情况,文中使用组合数学设计了一个新的没有形变的(3,n)-阈值方案的分享模型,并且探讨如何选择组合数学的参数,以此设计出最佳的分享矩阵,使得重构的图像可以显示出最佳的视觉效果.该研究发现:以"选择在n列中任选n/4个位置(3n/4个位置)来填入1值"的各种排列组合的方式,来设计分享矩阵的ML1(ML0)的话,该研究所提出的分享模型就可以在叠加3张分享投影片时,让重构图像的黑白色差达到最佳的视觉效果;以"选择在n列中任选1个位置(n-1个位置)来填入1值"的各种排列组合的方式,来设计分享矩阵的ML1(ML0)的话,该研究所提出的分享模型就可以在叠加所有n张分享投影片时,让重构图像的黑白色差达到最佳的视觉效果.从理论的分析上我们可以得知:在参与者的人数趋近于无限大时(n→∞),重构图像上的黑白色对照度将收敛到1/16,这个结果为目前所知的最佳值.相较于其他相关研究,该研究具备下列几项优点:(1)设计概念十分单纯,易于实作;(2)还原影像的黑白色差值优于或等于其他(3,n)-阈值视觉秘密分享方案的研究成果;(3)分享投影片的大?
Visual secret sharing scheme (VSSS) is a method to encode a secret image into n noise-like shadow images called shares. Decryption is possible by overlapping an adequate number (say, t) of shares. The hidden secret message will be naturally revealed and can be decoded by the human visual system (HVS) without the necessity of any complicated computation or replacement algorithms. Moreover, no knowledge of sophisticated cryptographic techniques is needed for the encryption and decryption processes. However, the secret image will be mvlsiole if the nulnoer ui stacked shares is less than t. This is so called (t,n)-threshold visual cryptography scheme ((t,n)-VCS). The greatest advantage of this decryption process is that neither complex computations nor any knowledge about VCS are needed. It is a simple and safe secret sharing method for the decoding of secret images when computer-resources are lacking. (3, n)-threshold visual secret sharing scheme ((3,n)-VSSS) is a special case of (t, n)-VSSS. In previous related (t, n)-VSSS researches, their sharing schemes are mostly an individual work of a specific t, however, they are not making an analysis whether this scheme is the best candidate for that specific t. Besides, the common drawbacks of the related researches include complex design method, poor black-white contrast of the restored image, and expanded pixels. In order to solve the above problems, we used combinatics to design a novel (3 ,n)-VSSS with unexpanded shares, and to analyze the visual effects with different parameters setting. We found that randomly selecting n/4 (resp. 3n/4) positions in each column of the dispatching matrix ML1 (resp. ML0) and filling them with a value of 1 can generate the best contrast when any 3 shares are stacked together; while randomly selecting 1 (resp. n--l) positions in each column of the dispatching matrix ML1 (resp. ML0) and filling them with a value of 1 can generate the best contrast when all n shares are