对太阳电池光谱响应理论及测试技术的进行了研究,通过绝对光谱响应与量子效率的依赖关系,由绝对光谱响应测数据推导出了太阳电池的外量子效率。采用LabVIEW虚拟仪器技术,系统地将计算机与单色仪、锁相放大器等仪器硬件结合起来,设计了一套集成化及自动化程度较高的太阳电池光谱响应测量系统。系统扫描光谱范围为400~1200nm,步进波长最小可达1nm,可满足硅太阳电池光谱响应测试的需要。该测试系统对硅太阳电池光谱响应及偏置光源下的量子效率进行多次测试,结果表明:测量系统稳定性高,重复性能较好。
The principle of Spectral response and the measurement technology for solar cells were investigated. Base on quantum efficiency dependence on absolute spectral response, external quantum efficiency was deduced by the measuring data of the absolute spectral response. A highly automatic spectral response measurement system was developed for silicon solar cells using virtual instrument technology base on LabVIEW which integrated software of computer with monochrometer, lock-in amplifier and other instrument hardware systematically. The range of the scanning wavelength was 400 nm to 1 200 nm and the minimum step wavelength was 1 nm which could meet the re- quirement of spectral response measurement for silicon solar cells. Several measurement results showed that the measurement system has highly repeatability and accuracy through measuring the spectral response and quantum efficiency under the bias light of silicon solar cells with this measurement system.