探讨傅里叶级数在平面和空间连杆机构中的几何意义,给出平面和空间连杆机构连杆曲线的统一数学表达式。借助傅里叶级数理论,对该表达式的谐波成分进行理论分析,发现连杆曲线谐波成分与其相应连杆转角函数谐波特征参数和机构尺寸参数的内在联系。通过连杆机构基本尺寸型与连杆转角函数的关系,提出建立连杆曲线数值图谱,以及推导连杆机构实际尺寸、连杆上点的位置和安装尺寸参数理论公式的一般方法。建立由平面机构到空间机构在形式上和内容上统一的连杆机构轨迹综合理论。从而为连杆机构轨迹综合提供了一种有效的通用方法。最后通过空间连杆机构轨迹综合算例,说明了本方法的有效性。
The geometric meaning of mechanism for the Fourier series is put forward.A brief uniform mathematical description of the coupler curves is established.The harmonic component of the mathematical expression is analyzed by using the Fourier series theory.The relationship between the harmonic component of the coupler curves and the basic dimensional types of linkage mechanism is discovered.Based on this relationship,the method of establishment of numerical atlas database is given.The derivation process of formula,which can compute the position for coupler point,real size and installing dimensions of the linkage mechanism,is given.A unified approach for path synthesis of linkage mechanism is presented.The spatial linkages are taken as examples to illustrate the analysis process and application of this method.