位置:成果数据库 > 期刊 > 期刊详情页
基于潜语义主题加强的跨媒体检索算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉科技大学计算机科学与技术学院,武汉430065, [2]智能信息处理与实时工业系统湖北省重点实验室武汉科技大学,武汉430065
  • 相关基金:国家自然科学基金资助项目(61003127,61373109)
中文摘要:

针对不同模态数据对相同语义主题表达存在差异性,以及传统跨媒体检索算法忽略了不同模态数据能以合作的方式探索数据的内在语义信息等问题,提出了一种新的基于潜语义主题加强的跨媒体检索(LSTR)算法。首先,利用隐狄利克雷分布(LDA)模型构造文本语义空间,然后以词袋(Bo W)模型来表达文本对应的图像;其次,使用多分类逻辑回归对图像和文本分类,用得到的基于多分类的后验概率表示文本和图像的潜语义主题;最后,利用文本潜语义主题去正则化图像的潜语义主题,使图像的潜语义主题得到加强,同时使它们之间的语义关联最大化。在Wikipedia数据集上,文本检索图像和图像检索文本的平均查准率为57.0%,比典型相关性分析(CCA)、SM(Semantic Matching)、SCM(Semantic Correlation Matching)算法的平均查准率分别提高了35.1%、34.8%、32.1%。实验结果表明LSTR算法能有效地提高跨媒体检索的平均查准率。

英文摘要:

As an important and challenging problem in the multimedia area, common semantic topic has different expression across different modalities, and exploring the intrinsic semantic information from different modalities in a collaborative manner was usually neglected by traditional cross-media retrieval methods. To address this problem, a Latent Semantic Topic Reinforce cross-media retrieval(LSTR) method was proposed. Firstly, the text semantic was represented based on Latent Dirichlet Allocation(LDA) and the corresponding images were represented with Bag of Words(BoW) model.Secondly, multiclass logistic regression was used to classify both texts and images, and the posterior probability under the learned classifiers was exploited to indicate the latent semantic topic of images and texts. Finally, the learned posterior probability was used to regularize their image counterparts to reinforce the image semantic topics, which greatly improved the semantic similarity between them. In the Wikipedia data set, the mean Average Precision(mAP) of retrieving text with image and retrieving image with text is 57.0%, which is 35. 1%, 34.8% and 32.1% higher than that of the Canonical Correlation Analysis(CCA),Semantic Matching(SM) and Semantic Correlation Matching(SCM) method respectively. Experimental results show that the proposed method can effectively improve the average precision of cross-media retrieval.

同期刊论文项目
期刊论文 19 会议论文 9 专利 2 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679