位置:成果数据库 > 期刊 > 期刊详情页
基于局域相关向量机回归模型的小尺度网络流量的非线性预测
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:O212.1[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]济南大学信息科学与工程学院,济南250022, [2]山东省网络环境智能计算技术重点实验室,济南250022
  • 相关基金:国家自然科学基金(批准号:61201428,61070130,61173079); 山东省自然科学基金(批准号:ZR2010FQ020,ZR2011FZ003); 山东省优秀中青年科学家科研奖励基金(批准号:BS2009SW003); 中国博士后科学基金(批准号:20100470081)资助的课题
中文摘要:

基于非线性时间序列局域预测法与相关向量机回归模型,本文提出了局域相关向量机预测方法,并应用于预测实际的小尺度网路流量序列.应用基于信息准则的局域预测法邻近点的选取方法来选取局域相关向量机回归模型的邻近点个数.对比分析了局域相关向量机预测法、前馈神经网络模型与局域线性预测法对网络流量序列的预测性能,其中前馈神经网络模型的参数采用粒子群优化算法来优化.实验结果表明:邻近点优化后的局域相关向量机回归模型能够有效地预测小尺度网络流量序列,归一化均方误差很小;局域相关向量机回归模型生成的时间序列具有与原网络流量时间序列相一致的概率分布;局域相关向量机回归模型的预测精度好于前馈神经网络模型的与局域线性预测法的.

英文摘要:

Based on the nonlinear time series local prediction method and the relevance vector machine regression model, the local relevance vector machine prediction method is proposed and applied to predict the small scale traffic measurement data, and the BIC-based neighbor point selection method is used to choose the number of nearest-neighbor points for the local relevance vector machine regression model. We also compare the performance of the local relevance vector machine regression model with the feed-forward neural network optimized by particle swarm optimization for the same problem. Experimental results show that the local relevance vector machine prediction method whose neighboring points have been optimized can effectively predict the small scale traffic measurement data, can reproduce the statistical features of real small scale traffic measurements, and the prediction accuracy of the local relevance vector machine regression model is superior to that of the feedforward neural network optimized by PSO and the local linear prediction method.

同期刊论文项目
期刊论文 65 会议论文 28 获奖 6 著作 2
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876