为了有效地缩短超燃冲压发动机隔离段长度,在前期研究的等宽度平直斜楔基础上,用数值模拟的方法,研究了一种侧壁面后掠的倒置梯形涡流发生器,涡流发生器放置在隔离段进口厚附面层一侧。研究结果表明:加装倒置梯形涡流发生器后可在进出口压比相同的情况下,将隔离段长度减小40%左右,比等宽度平直斜楔多缩短5%;激波串长度随后掠角呈非线性变化,在一适当的后掠角下,激波串长度最小,它的总压恢复系数与等宽度平直斜楔处于同等水平。
An inverse trapezia vortex generator based on a previous investigation of the full ramp is designed to shorten the isolator.The vortex generator is placed on the lower wall at the isolator entrance.Computational fluid dynamics simulations are performed on the isolator.Numerical results indicate that for the same backpressure the overall length of the isolator can be reduced by 40% with the introduction of the inverse trapezia vortex generator.Compared with the full ramp,the truncated length is improved by approximately 5%.The length of the shock train does not change lineally with the change of the swept angle.With the optimum swept angle design,the length of the shock train can be kept at the minimum,and the total pressure recovery coefficient in the isolator with an inverse trapezia vortex generator is at the same level as that of the full ramp.