利用紧性定理研究五维空间Navier-stokes方程的正则性。证明了如果u∈L4,∞(Ω×(-T1,0))是一个Leray-Hopf弱解,并且∫Ω×(-T1,0)u3+p32<ε,那么u是Holder连续。
Using the compactness theorem,the regularity of Navier-Stokes equations in five-dimensional space is studied.It is proven that if u ∈ L4,∞(Ω×(-T1 ,0))is a Leray-Hopf weak solution and∫Ω×(-T1 ,0)u3 +p32 〈ε,then u is Hlder continuous.