针对自动驾驶中避障的动态路径规划问题,提出一种在已知车辆的初始位置、速度、方向和障碍物位置情况下,实时避开障碍物的动态规划算法。首先,利用三次样条曲线的二阶连续性,结合已知的车道信息产生道路基准线;其次,以车辆的位置方向和道路的曲率构建s-q坐标系,并在s-q坐标系内产生从车辆当前位置到目的位置的一簇平滑曲线,作为候选路径;最后,综合考虑车辆行驶的安全性、平滑性和连贯性准则,设计一种新的代价函数,并且通过使代价函数最小化的方法从候选路径中选择最佳路径。在实验过程中,通过设计多种不同的模拟道路来检验算法的性能。实验结果表明,该方法在多种地形的单车道和多车道道路上都能够规划出安全、平滑的路径,有效避开障碍物,并且具有较好的实时性。
To deal with the problem of dynamic path planning for autonomous driving with avoidance of obstacles, a real- time dynamic path planning approach was proposed to avoid obstacles in real-time under the condition of knowing initial vehicle position, speed, orientation and the obstacle positions. Firstly, a base frame of the road was constructed using the continuity of the second derivative for cubic spline curves combined with the information of the road edges and lanes. Secondly, the s-q coordinate system was established using the position and orientation of the vehicle and the curvature of the road. Then a set of smooth curves from the current position to the destination were generated as the path candidates in the s-q coordinate system. Finally, considering the factors of safety, smoothness and continuity, a novel cost function was designed, and the optimal path was selected by minimizing the cost function. Various simulative roads were designed to test the proposed method in the experiments. The experimental results show that the proposed approach has the ability of planning a safe and smooth path for avoiding the obstacles on both single-lane roads and multi-lane roads with good real-time performance.