为了发展测度链上时滞动力方程的定性理论,利用Riccati变换方法,给出测度链上二阶非线性时滞动力方程(a(t)x^Δ(t))^Δ+p(t)x^Δσ(t)+q(t)f(x(τ(t)))=0解的振动性的条件,其中p,q是定义在测度链丁上正的实值右稠密连续函数.
To develop the qualitative theory of delay dynamic equations on time scales, by means oI Riccati transformation technique, oscillation criteria for second-order nonlinear delay dynamic equations on time scales (a(t)x^Δ(t))^Δ+p(t)x^Δσ(t) +q(t)f(x(τ(t)))=0 are established, where p and q are positive real value rd-eontinuous functions defined on T.