建立了铯原子双磁光阱(MOT)系统用来制备腔量子电动力学(Cavity-QED)实验所需的处于超高真空(UHV)环境中的冷原子。采用一柬聚焦的连续激光柬将气室磁光阱从背景铯蒸气中冷却并将俘获到的冷原子有效地输运到超高真空磁光阱,实现了铯原子双磁光阱。实验中研究了输运光束的失谐量对于超高真空磁光阱中的稳态冷原子数的影响,同时对气室磁光阱和超高真空磁光阱的装载过程作了分析。气室磁光阱和超高真空磁光阱的典型气压分别约为1×10^-6Pa和8×10^-8Pa,典型的稳态冷原子数分别约为5×10^7和5×10^4,冷原子等效温度约72±4μK。
A cesium double magneto-optical trap (MOT) system is established to prepare the cold atoms in the ultrahigh-vacuum (UHV) chamber for cavity quantum electrodynamics (Cavity-QED) experiment. Utilizing a focused weak continuous-wave laser beam, the cold cesium atoms, which are cooled and trapped from the slow tail of cesium vapor at room temperature, are continuously transferred from vapor-cell MOT to UHV MOT. The effect of the transfer laser detuning upon the steady-state atoms number in UHV MOT, and loading process of double MOT are experimentally investigated. Typical pressures of the vapor-cell MOT and UHV MOT are -1×10^-6 Pa and -8×10^-8 Pa, respectively. Normally -5×10^7 and -5×10^6 cold cesium atoms with effective temperature of 72±4μK are loaded into the vapor-cell MOT and UHV MOT.