面向服务的网格环境下,资源种类多样,表示方式混杂,传统的网格资源检索方法不再适用于越来越复杂的网格环境,如何在复杂网格环境下建立一种合理有效的资源检索方法是目前网格发展的重点。提出了一种基于用户行为反馈的网格资源检索方法,这种方法建立在网格用户行为的基础上,利用用户行为的历史记录结合自适应的相关反馈方法对网格资源进行分析,通过资源的访问路径、访问频度、访问时间和检索结果等建立网格资源间的关联模型。该方法在某种程度上使网格资源检索结果与用户的主观感知更加接近,减轻了异构网格环境产生的语义混杂、模糊问题,并通过实验证明有较高的检索精确度。
In service-oriented grid environment,there are a great amount of various resources described in many different ways.And the traditional methods of grid resource retrieval do not fit the more and more complex grid environment,thus,it is very important to develop a reasonable and effective method to suit future grid system.This paper proposes a novel resource retrieval based on the user behavior feedback.It analyzes the user behavior according to history records,adopts the relevance feedback technique to analyze the grid resources and establishes a correlation model for them according to resource access path,access frequency,access time and retrieve results.This method makes the grid resource retrieval results closer to user's subjective perception and reduces semantic mix and ambiguity caused by heterogeneous grid environment.The experiment results show it can achieve a better retrieval accuracy.