This paper reports on an experiment designed to test electromagnetic(EM)attenuation by radio-frequency(RF)plasma for cavity structures.A plasma reactor,in the shape of a hollow cylinder,filled with argon gas at low pressure,driven by a RF power source,was produced by wave-transmitting material.The detailed attenuations of EM waves were investigated under different conditions:the incident frequency is 1-4 GHz,the RF power supply is 13.56 MHz and1.6-3 k W,and the argon pressure is 75-200 Pa.The experimental results indicate that 5-15 d B return loss can be obtained.From a first estimation,the electron density in the experiment is approximately(1.5-2.2)×1016m-3and the collision frequency is about 11-30 GHz.The return loss of EM waves was calculated using a finite-difference time-domain(FDTD)method and it was found that it has a similar development with measurement.It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet.
This paper reports on an experiment designed to test electromagnetic(EM)attenuation by radio-frequency(RF)plasma for cavity structures.A plasma reactor,in the shape of a hollow cylinder,filled with argon gas at low pressure,driven by a RF power source,was produced by wave-transmitting material.The detailed attenuations of EM waves were investigated under different conditions:the incident frequency is 1-4 GHz,the RF power supply is 13.56 MHz and1.6(-3) k W,and the argon pressure is 75-200 Pa.The experimental results indicate that 5-15 d B return loss can be obtained.From a first estimation,the electron density in the experiment is approximately(1.5-2.2)×1016m(-3)and the collision frequency is about 11(-3)0 GHz.The return loss of EM waves was calculated using a finite-difference time-domain(FDTD)method and it was found that it has a similar development with measurement.It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet.