为了解决传统数据网格调度算法在对层次式数据网格调度过程中出现的极易陷入局部最优值和收敛速度过慢的问题,将粒计算的思想引入到网格调度中,提出了一种基于商空间的层次式数据网格资源调度QSHDGRA(quotientspacetheorybasedhierarchicaldatagridresourceallocation)算法。首先分析了层次式数据网格的特点,接着提出一种基于业务请求平均等待时间和网络与节点资源利用均衡度的调和函数的调度问题模型,随后设计了基于商空间的层次式最优资源调度算法。该算法的特点是可以在不同粒度上由粗至细地对网格业务进行调度,从而保证不同业务的QoS,并实现系统全局最优资源分配。仿真实验表明,算法可以显著地提升系统整体的吞吐率,具有更快的收敛速度,并具备线性扩展能力。
In order to solve the problems of falling into local optimum value and converging too slowly when allocating resources in hierarchical data grid using traditional algorithms, the granular computing was introduced and a quotient space theory based hierarchical data grid resource allocation (QSHDGRA) algorithm was proposed. Firstly, the charac- teristics of hierarchical data grid were analyzed. Secondly, a reconciling model of minimum average waiting time and maximum network and node resource utilization was defined, and then the QSHDGRA algorithm was designed. The al- gorithm can allocate resources from coarse granularities to fine ones, so it can guarantee the QoS of different businesses and make global optimal resource allocation. Simulation results show that QSHDGRA can improve overall system throughput with faster convergence speed and linear scalability.