针对社交网络中好友检索服务的隐私保护问题,本文提出一种基于重匿名技术的粒度化好友搜索架构F-Seeker.对用户发布的位置信息采用增强的k匿名策略—(k,m,e)-匿名,用以防止"好奇"的搜索服务提供方对用户隐私的推测.在处理好友搜索服务过程中,由服务提供方根据粒度化的可视策略对数据实施重匿名,实现了对用户位置信息粒度化的访问控制.此外,文中对发布数据采用Z序编码并在搜索过程中通过运用剪枝策略提高搜索效率.实验结果表明,文中提出的匿名策略在保护用户隐私的同时并没有大幅度地增加计算开销.
Aiming to the privacy-preserving problem for moving-object retrieval services in social network,we propose a granular friend retrieval framework based on over-anonymity,called F-Seeker. Before outsourcing data,we adopt an enhanced anonymity strategy--( k,m,e)-anonymity,which preserving user privacy from the curious retrieval service provider. In the processing of providing services,the service provider employs over-anonymity strategy based on visibility requirements to realize granular data access control. In addition,we encode data using Z-order address and the retrieval efficiency can be improved by pruning. Experimental results showthat the proposed strategy can protect user privacy while the computation overhead does not increase greatly.