位置:成果数据库 > 期刊 > 期刊详情页
人参潜在地理分布以及气候变化对其影响预测
  • ISSN号:1001-9332
  • 期刊名称:《应用生态学报》
  • 时间:0
  • 分类:S567.51[农业科学—中草药栽培;农业科学—作物学]
  • 作者机构:[1]陕西师范大学旅游与环境学院,西安710119, [2]陕西师范大学西北濒危药材资源开发国家工程实验室,西安710119, [3]中国科学院寒区旱区环境与工程研究所,兰州730000, [4]陕西师范大学生命科学学院,西安710119
  • 相关基金:本文由国家自然科学基金项目(31070293)资助
中文摘要:

本文以人参为研究对象,基于人参分布点位数据和22个气候环境因子数据,运用Bio Mod2平台10个物种分布模型对当前我国东北地区人参潜在生境分布进行预测.以受试者工作特征曲线(ROC)为权重集成10个模型的模拟结果,构建组合模型,并基于该模型预测了IPCC第五次评估报告中RCP 8.5、RCP 6.0、RCP 4.5和RCP 2.6等4种排放情景下21世纪50和70年代人参潜在分布范围.结果表明:在基准气候条件下,人参适宜生境面积占研究区总面积的10.4%,此类地区主要分布于研究区东北部长白山地区以及小兴安岭东南部区域的森林地带.在未来不同的排放情景下研究区人参的适宜生境变化显著,总体上分布范围将有一定程度的缩小.同时参与建模的10种模型在统计学精度、预测结果以及变量权重上都有差异.模型精度计算结果表明,MAXENT模拟效果最好,GAM、RF和ANN次之,SRE模拟精度最低.本文构建的组合模型在一定程度上提高了现有物种分布模型的预测精度,从而使模拟效果更优.

英文摘要:

This study utilized Panax ginseng as the research object. Based on BioMod2 platform, with species presence data and 22 climatic variables, the potential geographic distribution of P. gin- seng under the current conditions in northeast China was simulated with ten species distribution model. And then with the receiver-operating characteristic curve (ROC) as weights, we build an ensemble model, which integrated the results of 10 models, using the ensemble model, the future distributions of P. ginseng were also projected for the periods 2050s and 2070s under the climate change scenarios of RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 emission scenarios described in the Special Report on Emissions Scenarios ( SRES ) of IPCC ( Intergovernmental Panel on Climate Change). The results showed that for the entire region of study area, under the present climatic con- ditions, 10.4% of the areas were identified as suitable habitats, which were mainly located in north- east Changbai Mountains area and the southeastern region of the Xiaoxing' an Mountains. The model simulations indicated that the suitable habitats would have a relatively significant change under the different climate change scenarios, and generally the range of suitable habitats would be a certain degree of decrease. Meanwhile, the goodness-of-fit, predicted ranges, and weights of explanatory variables was various for each model. And according to the goodness-of-fit, Maxent had the highest model performance, and GAM, RF and ANN were followed, while SRE had the lowest prediction accuracy. In this study we established an ensemble model, which could improve the accuracy of the existing species distribution models, and optimization of species distribution prediction results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用生态学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国生态学学会 中国科学院沈阳应用生态研究所
  • 主编:沈善敏
  • 地址:沈阳市文化路72号
  • 邮编:110016
  • 邮箱:
  • 电话:024-83970393
  • 国际标准刊号:ISSN:1001-9332
  • 国内统一刊号:ISSN:21-1253/Q
  • 邮发代号:8-98
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学院优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国生物医学检索系统,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:98742