该文研究了高阶齐次微分方程f(k)+Ak-2f(k-2)+…+A1F′+A0f=0,其中A0,…,Ak-2为具有有限个极点的亚纯函数,当存在某个系数As(s∈{2,…,k-2))为缺项级数并对方程的解的性质起着主要支配作用时,得到上述微分方程的线性无关超越解的最少个数和零点收敛指数为有穷的解的最多个数.
In the paper, the authors investigate the exponent of convergence of the zero- sequence of meromorphic solutions to homogeneous linear differential equation f(k)+Ak-2f(k-2)+ …+ A1f′ + Aof = 0 when its coefficients are meromorphic functions possessing only a finite number of poles and dominant coefficient As(s ∈ {2,…, k - 2)) is fabry gap. The minimum number of linear independent transcendental solutions and the maximum number of linear in- dependent transcendental solutions with finite exponents of convergence of the zero-sequence are obtained.