设G是有限阿贝尔群,S是元素在G中的平方自由,零和自由序列。f(S)表示G中满足如下条件的元素的个数:可以表示成S的一个非空子序列和的元素的个数。已知当|S|=5时,有f(S)≥13。刻画了当f(S)=13时S的所有情形。
Let G be a finite abelian group,and let S be a square-free,zero-sum-free sequence of elements in G.Let f(S) denote the number of elements in G which can be expressed as the sum over a nonempty subsequence of S.When the length of Sequals to 5,the result f(S)≥13 is obtained.All cases of S whenf(S)=13 are described.