<正>The quasi-classical trajectory(QCT) method is used to calculate the stereo-dynamics of the exchange reaction H_a+LiH_b→LiH_a+H_b and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections(PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j’ is not only aligned,but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.
The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Prudente et al. [Prudente F V, Marques J M C and Maniero A M 2009 Chem. Phys. Lett. 474 18]. The reactive probability of the title reaction is computed. The vector correlations and four polarization-dependent generalized differential cross sections (PDDCSs) at different collision energies are presented. The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work. The results indicate that the product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.