研究一类在Orlicz-Sobolev空间上具有Neumann边界条件的椭圆问题,分别讨论了次线性和超线性情形,利用满足Cerami紧性条件的经典临界点理论给出两个解的存在性定理。
A class of elliptic problems in Orlicz-Sobolev space with Neumann boundary conditions are studied. The sublinear case and the superlinear case are discussed, and using the classical critical point theory with the Cerami compactness condition two existence theorems are given,