文章通过定义新的广义Nechaev置换及环F3+uF3上新的Gray映射,证明了域F3上长为3n的一类循环码皆是环F3+uF3上某个长为n的线性码的Nechaev-Gray像。由该Gray映射可诱导出Van-Lint的广义(U|U+V构造。文章给出了该广义(U|U+V)构造的距离公式的具体证明。
By defining the new generalized Nechaev permutation and the new Gray map over the ring F3 +uF3, it is proved that every ternary cyclic code of length 3n of some kind is the Nechaev-Gray map of certain linear code of length n over the ring F3 + uF3. The new Gray map can induce Van-Lint ' s generalized (U|U+V)-construction. A detailed proof of the distance formula about the construction is also given.