合成功能 h 的划分 n 的差别: 功能 f 的 = f o g,在一组节点 t_0 的 g, t_1,? ? ?, t_n 被 f 的划分差别的联合在节点 g (t_0 ) 的组显示出, g (t_1 ) ,? ? ?, g (t_m ) 和在节点 t_0 的几个部分组的 g 的划分差别, t_1,? ? ?, t_n m =1, 2,? ? ?, n。特别,当节点的给定的组完全等于对方时,它将导致 Faa di 布鲁诺功能 h 的更高的衍生物的公式。
The n-divided difference of the composite function h := f o g of functions f, g at a group of nodes t0,t1,…,tn is shown by the combinations of divided differences of f at the group of nodes g(t0),g(t1),…,g(tm) and divided differences of g at several partial group of nodes t0,t1,…,tn, where m = 1,2,…,n. Especially, when the given group of nodes are equal to each other completely, it will lead to Faà di Bruno's formula of higher derivatives of function h.