设A是R^n上的一个m阶可导函数,且D^λA∈Λβ(0〈β〈1,|λ|=m),Ω(x,z)∈L^∞(R^n)×L^s(S^n-1)(s≥n/(n-β))是零阶齐次函数且关于变量z满足消失条件.该文证明了广义高阶Marcinkiewicz积分交换子μΩ^A及其变形μΩ^A在Herz型Hardy空间的有界性.
Let A be a function with derivatives of order m and D^λA∈Λβ(0〈β〈1,|λ|=m).The authors in the paper prove that if Ω(x,z) ∈ L^∞(R^n) × L^s(S^n-1)(s ≥n/(n- β)) is homogenous of degree zero and satisfies the mean value zero condition about the variable z,then both the generalized higher order Marcinkiewicz integral μΩ^A and its variation μΩ^A are bounded on Herz-type Hardy spaces.