位置:成果数据库 > 期刊 > 期刊详情页
基于提升格式小波包变换的SAR图像去噪
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.4[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]武汉大学数学与统计学院,武汉市珞珈山,430072, [2]军事经济学院数理系,武汉市罗家墩122号,430035
  • 相关基金:国家自然科学基金资助项目(70371032);国家教育部博士点专项基金资助项目(20020486035).
中文摘要:

基于信号和噪声在提升格式小波分解中呈现出的不同特性,提出了一种新的小波包去噪算法。该算法采用提升格式小波对SAR图像进行最优小波包分解,并计算每个子频带的能量范数,然后根据软阈值法和能量范数区分信号和噪声,达到去除噪声的目的。试验结果表明,该算法对SAR图像具有较好的去噪效果,不仅可以去除图像中的大部分噪声,而且可以较好地保留图像纹理的细节信息。与传统小波包算法相比,其计算速度快了一倍左右。

英文摘要:

According to the different characteristics that signal and noise exhibit during the wavelet decomposition, a new denoising method based on the lifting scheme wavelet packet decomposition is presented. In this method, the SAR images are decomposed by using the best wavelet packet and the norm of each sub-band are calculated, signals and noise can be discriminated based on the norm and soft-threshold method, and the images can be denoised. Experimental shows that the proposed algorithm is of excellent performance in denoising SAR images, and can remove most noise of images with well-kept texture details information. The calculating speed of the method is twice the speed of the general wavelet packet transform algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217