位置:成果数据库 > 期刊 > 期刊详情页
基于二进制混沌粒子群算法的认知决策引擎
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TN914.3[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]哈尔滨工业大学电子与信息工程学院,哈尔滨150080
  • 相关基金:国家自然科学基金委员会与中国民用航空局联合资助项目(61071104);国家科技重大专项“宽带多媒体集群系统技术验证(中速模式)”(2011ZX03004-004).
中文摘要:

为了解决不同通信模式下认知无线电发射机参数合理优化的问题,提出了一种基于二进制混沌粒子群算法(BCPSO)的认知决策引擎,该引擎利用粒子群优化算法收敛速度快和混沌运动全局遍历性的特点,使认知决策在多目标优化过程中有效地摆脱了局部极值点,提高了参数优化的精度和稳定性.基于认知正交频分复用(OFDM)系统的仿真结果表明,相对于现有认知引擎,该引擎具有平均适应度值高、对不同通信模式鲁棒性强的特点,实现了有效优化发射机参数的目的.

英文摘要:

To solve the problem of transmitter parameter optimization in different communication modes for cognitive radio (CR) systems, a cognitive decision engine based on binary chaotic particle swarm optimization (BCPSO) is proposed. The BCPSO algorithm has both the fast convergence of particle swarm optimization and global ergodic property of chaos. Therefore, the cognitive decision engine based on BCPSO can jump off the local extreme points effectively, which can improve the precision and stability of parameter optimization. The cognitive orthogonal frequency division multiplexing (OFDM) system is used for the performance analysis. And the simulation results show that the proposed cognitive decision engine, which has higher fitness value and stronger robustness for different communication modes, is better than the other existing engines. The proposed engine achieves the objective of parameter optimization effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329