设图G=(X,Y,E)是二分图,g,f是定义在V(G)上的正整值函数,且对任意的x∈P(G)有g(x)〈f(x),证明了:如果图G是(mg,mf-1)-图,M是G的任一含有m条边的对集。则存在图G的一个(g,f)-因子F,使F包含M任意给定的一条边,并且不包含其他的m-1条边;二分图G是(2m-1)-边连通的(mf)-图,则图G有一个f-因子包含任意给定的一条边,并且不包含任意其他的m-1条边.
Let G = ( X, Y, E) be a bipartite graph and let g and f be two positive integer functions defined on V(G) with g(x) 〈 f(x) for each x ∈ V(G). It is proved that if a G is the ( mg, mf- 1 )- graph and M is a mathing with m edge, then G has a (g,f)-factor containing an edge of M and excluding other edges of M. If G is the (2m - 1)-edge connected bipartite ( mf)-graph, then G has an f factor containing any given edge and excluding any given m - 1 edges.