位置:成果数据库 > 期刊 > 期刊详情页
基于非线性混合效应的高山松林生物量模型研究
  • ISSN号:1000-2286
  • 期刊名称:《江西农业大学学报》
  • 时间:0
  • 分类:S758.5[农业科学—森林经理学;农业科学—林学]
  • 作者机构:西南林业大学林学院,云南昆明650224
  • 相关基金:国家自然科学基金项目(31460194;31060114); 云南省林学一流学科建设经费
中文摘要:

以云南省香格里拉县的高山松林为研究对象,选取遥感因子与地形因子作为模型中的固定效应,并以幂函数模型为基础进行林分生物量基本模型的构建;采用混合效应模型技术,根据海拔高低把样地划分为6个区域,将区域效应作为随机效应,并在基础混合效应模型基础上考虑方差和协方差结构,构建林分生物量混合效应模型,以此估测高山松林分生物量。利用AIC、BIC和Log Lik 3个拟合指标评价模型的拟合效果,利用SRE、MRE和AMRE进行最终林分生物量混合效应模型的独立性检验。结果表明:从模型拟合结果看,考虑区域效应的混合效应模型的拟合效果明显高于基础模型,其AIC和BIC值最低,Log Lik达到最大;从模型独立性检验看,考虑区域效应的混合效应模型的绝对平均误差最小(AMRE=31.52%),精度达到77.83%。综合分析,混合效应模型可有效提高高山松林分生物量估测精度。

英文摘要:

n this paper,the Pinus densata forest of Shangri-La City of Yunnan Province was taken as the research object,and the remote sensing factors and terrain factors were selected as fixed effects,based on the best power function model,the mixed-effect model of forest stand biomass was constructed by using the technology of mixed-effect models,and the sample plots were divided into 6 regions according to the altitude taking the regional effect as a random effect,and considering the variance and covariance structure on the basis of the mixed-effect model,so as to estimate the biomass of Pinus densata forest.The fitting effect of the model was evaluated by using AIC,BIC and Log Lik fitting parameters,and the SRE,MRE and AMRE were used to test the independence of the final mixed-effect model of stand biomass mixing.IThe results showed: in view of the fitting effect,the mixed model,which took the regional effect into consideration,was better than the basic model,its AIC and BIC values were the lowest,the Log Lik reached the maximum; in view of the independence test,the AMRE of the mixed model,which took the regional effect into consideration,was the lowest( AMRE = 31.52%),its prediction accuracy was 77.83%. By analysis,the mixed-effect model can effectively improve the accuracy of the estimation of biomass of Pinus densata forest.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《江西农业大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:江西农业大学
  • 主办单位:江西农业大学
  • 主编:石庆华
  • 地址:江西省南昌市经开区志敏大道1101号江西农业大学期刊社
  • 邮编:330045
  • 邮箱:ndxb7775@sina.com
  • 电话:0791-83813246 83828010
  • 国际标准刊号:ISSN:1000-2286
  • 国内统一刊号:ISSN:36-1028/S
  • 邮发代号:44-102
  • 获奖情况:
  • 中国期刊方阵双百期刊,国家期刊奖百种重点期刊,中国高校精品科技期刊,华东地区优秀期刊,江西省"名刊建设工程"期刊,江西省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20807