选择13C-葡萄糖作为稻田土壤典型易利用态外源有机碳,通过室内培养试验,研究不同C/N/P/S计量比条件下,葡萄糖分解矿化的动态规律及其激发效应。结果表明,稻田土壤中葡萄糖-碳(C)快速矿化,60 d培养实验后,有65.5%~74.6%的葡萄糖-C矿化。养分元素的添加使土壤中葡萄糖-C快速转化碳库的比例逐渐由58%增加至65%,从而使葡萄糖-C矿化率提高了3.9%~12.5%,养分元素的添加量与葡萄糖-C快速转化碳库的比例和矿化率均表现出显著的正相关关系(R 2 = 0.63,p〈 0.05;R 2 = 0.83,p〈 0.05)。葡萄糖-C矿化过程中,导致稻田土壤碳的累积负激发效应为-370~-570 mg kg-1,养分元素添加比例越大,其负激发效应越强,二者呈显著的负相关性(R 2 = 0.66,p 〈 0.05)。研究表明,稻田土壤中易利用态碳的矿化受C/N/P/S元素计量比的影响,高比例养分元素的添加,促进土壤中易利用态碳的矿化,抑制土壤原有有机质的分解,增强负激发效应。本研究可为深入了解稻田生态系统碳循环、实现农田土壤肥力提升和温室气体减排提供理论依据。
【Objective】The turnover of liable organic carbon (C) sources in soil is a key component of the cycle of soil carbon. Liable C sources (i.e. glucose), derived from C deposition in rhizosphere and other extraneous C inputs, are important sources of the C pool in the soil. Therefore, studying the turnover of liable C sources as affected by stoichiometric ratio of soil nutrients may help reveal mechanisms of the eco-stoichiometric regulation of the turnover of extraneous C in paddy soil. 【Method】In this study, an in-lab incubation experiment was conducted using 13C-glucose as extraneous organic C typical in paddy soil to explore quantitatively dynamics of decompositing mineralization and priming effect of glucose as affected by C/N/P/S stoichiometric ratio. 【Result】Results show that glucose was rapidly mineralized in the paddy soil so that 65.5% to 74.6% of the added glucose-C was mineralized after 60 d of incubation. The addition of nutrient elements not only increased glucose mineralization rate, but also raised the proportion of glucose-C available to soil microbes from 58% to 65%, thus accelerating glucose turnover rate in the soil. The amount of nutrient elements added was found significantly and positively related to both proportion of the microbe-available C pool in and mineralization rate (R 2 = 0.63, p〈0.05; R 2= 0.83, p〈 0.05) of glucose C, which suggests that the addition of nutrient elements promoted the microbial utilization of extraneous C in the soil, and stoichiometric ratio of the nutrient elements regulated the dynamic of glucose mineralization. With the addition of glucose-C, the decomposition of the soil native organic matter was inhibited, and the cumulative negative priming effect was -370 to -570 mg kg-1. The higher the amount of nutrient elements added, the stronger the negative priming effect observed, and the two were obviously in negative correlation (R 2 = 0.66, p〈 0.05), indicating that the soil microbes preferentially utilize the added glucose-C to susta