位置:成果数据库 > 期刊 > 期刊详情页
基因表达数据的频繁闭合模式挖掘新算法
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学计算机科学与技术系,安徽合肥230027, [2]国家高性能计算中心,安徽合肥230027, [3]桂林电子科技大学计算机系,广西桂林541004
  • 相关基金:国家自然科学基金重点项目(60533020)资助.
中文摘要:

基因表达数据集与传统事务数据集相比呈现出新的特征,由于其项目数远远大于事务数,使得大量现有的基于项目枚举的频繁闭合模式挖掘算法不再适用.为此提出一种频繁闭合模式挖掘新算法TPclose,使用TP-树(tidset-prefix tree)保存项目的事务集信息.该算法将频繁闭合模式挖掘问题转换成频繁闭合事务集挖掘问题,采取自顶向下分而治之的事务搜索策略,并组合了高效的修剪技术和有效的优化技术.实验表明,TPclose算法普遍快于自底向上事务搜索算法RERⅡ,最高达2个数量级以上.

英文摘要:

Unlike the traditional datasets, gene expression datasets typically contain a huge number of items and a few transactions. While there are large numbers of algorithms developed for frequent closed patterns mining, their running time increased exponentially with increasing average length of the transactions, thus such gene expression datasets render most current algorithms impractical. TPclose, a new efficient algorithm for mining frequent closed patterns from gene expression datasets was proposed. It stored the tidset of each item using a TP tree (tidset-prefix tree). TPclose converted the problem of mining frequent closed patterns into one of mining frequent closed tidsets, adopting the top-down and divide-and-conquer search strategy to explore transaction enumeration search space and combining efficient pruning and effective optimizing. Several experiments on real-life gene expression datasets show that TPclose outperforms RER Ⅱ , an existing algorithm based on bottom-up search strategy, by up to two orders of magnitude.

同期刊论文项目
期刊论文 128 会议论文 7
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237