本文研究了弱Hopf代数上的冲积并讨论了它的性质,设H是弱Hopf代数,A是左H-模代数.我们给出了冲积A#H是弱双代数的一个充分条件以及A#H是A可分扩张的一个判定条件.另外,利用积分理论研究了Hopf模代数的有限性条件.
In this paper we study the concept of smash products over weak Hopf algebras and investigate their properties. Let H be a weak Hopf algebra and A an H-module algebra. We give a sufficient condition for the smash product A#H to be a weak bialgebra and a criterion for A#H to be separable over A. Moreover, using the integral theory, we study the finiteness conditions for H-module algebras.