位置:成果数据库 > 期刊 > 期刊详情页
低剂量CT图像的自适应广义总变分降噪算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.413[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子测试技术国家重点实验室中北大学,太原030051, [2]仪器科学与动态测试教育部重点实验室中北大学,太原030051
  • 相关基金:国家自然科学基金资助项目(61071192,61271357,61171178); 山西省国际合作项目(2013081035); 山西省研究生优秀创新项目(2009011020-2,20123098); 中北大学第十届研究生科技基金项目(20131035);中北大学2013年校科学基金计划项目; 山西省高等学校优秀青年学术带头人支持计划项目
中文摘要:

针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。

英文摘要:

A new denoising algorithm, Adaptive Total Generalized Variation( ATGV), was proposed for removing streak artifacts within the reconstructed image of low-dose Computed Tomography( CT). Considering the shortage that the traditional Total Generalized Variation( TGV) would blur the edge details, the intuitionistic fuzzy entropy which can distinguish the smooth and detail regions was introduced into the TGV algorithm. Different areas of the image were processed with different denoising intensities. As a result, the image details could be well preserved. Firstly, the Filtered Back Projection( FBP)algorithm was used to obtain a reconstructed image. Secondly, the edge indicator function based on intuitive fuzzy entropy was applied to improve the TGV algorithm. Finally, the new algorithm was employed to reduce the noise in the reconstructed image. The simulations of the low-dose CT image reconstruction for the Shepp-Logan model and the thorax phantom were used to test the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm has the smaller values of the Normalized Mean Square Distance( NMSD) and Normalized Average Absolute Distance( NAAD) in the two experiment images, compared with the Total Variation( TV) algorithm and TGV algorithm. Meanwhile, the two experiment images processed with the new method can obtain high Peak Signal-to-Noise Ratios( PSNR) of 26. 90 d B and 44. 58 d B,respectively. So the proposed algorithm can effectively preserve image details and edges, while reducing streak artifacts.

同期刊论文项目
期刊论文 34 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679