为了研究烟塔合一技术中开孔孔洞的形状和相对位置对塔的稳定性和压力分布的影响,以采用这一技术的中国最高、最大的某电厂超大型烟塔合一冷却塔为研究对象,通过风洞试验对比了该塔筒表面开孔的排烟冷却塔和常规无孔冷却塔在开孔处的风压分布和塔筒整体阻力系数,得到了排烟冷却塔在烟道开孔周围塔筒表面的局部风压分布特征;通过改变两孔道间的夹角来考虑两孔道间的相对位置对冷却塔整体受力的影响;对比了开孔冷却塔与未开孔冷却塔的受力性能。结果表明:两孔道相对位置的变化对冷却塔整体阻力系数影响很大;开孔后冷却塔整体阻力系数均大于未开孔时的阻力系数。
In order to research the influence of the form of hole and holes' relative position on stability and pressure distribution of natural draft cooling tower (NDCT) with flue gas injection, taking China's highest and biggest super large-scale cooling tower with flue gas injection which used this technology as study object, the wind pressure distribution and whole drag coefficient were compared around open hole flue about cooling tower with flue gas and without flue gas in wind-tunnel test, then the characteristics of local wind pressure distribution around the flue gas of cooling tower were gained. Finally, the whole strength's influence caused by changing angle of two holes' relative position was considered, and the strength performance of a lone cooling tower without the hole was compared with. The results show that the changing of two holes' relative position has great influence on whole drag coefficient; the whole drag coefficient of cooling tower with open hole is bigger than that of cooling tower without open hole.