在齐次Neumann条件下考虑一类由于捕食方式引起的一类具有非局部时滞和扩散的捕食者-食饵系统.通过使用线性化方法和上下解方法,作者研究了该系统的常数平衡态的局部稳定性和全局稳定性.
In this paper, we consider a nonlocal delayed reaction-diffusion equation due to the gestation of the predator and homogeneous Neumann boundary conditions. By using the linearization method and the method of upper and lower solutions, we study the local and global stability of the constant equilibrium, respectively.