位置:成果数据库 > 期刊 > 期刊详情页
基于灰色关联分析的中文新闻事件关联性识别
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]昆明理工大学信息工程与自动化学院,昆明650500, [2]昆明理工大学智能信息处理重点实验室,昆明650500
  • 相关基金:国家自然科学基金资助项目(61262041,61472168,61562052); 云南省自然科学基金重点资助项目(2013FA030)
中文摘要:

针对中文新闻事件关联性识别准确率较低的问题,提出一种基于灰色关联分析(GRA)的中文新闻事件关联性识别算法,该算法是一种多因素分析法。首先,通过分析中文新闻事件的特性,提出三个影响事件关联性的因素,分别为触发词的共现性、事件的共享名词以及事件句的相似度;其次,对多个影响因素进行量化处理,计算每个影响因素的影响权值;最后,运用GRA将多个影响因素结合在一起,建立事件之间的灰色关联性分析模型,实现事件关联性识别。通过实验验证了三个影响因素对事件关联性识别的有效性,而且相对于只考虑单一影响因素的关联性识别算法,所提算法提高了事件关联性识别的准确率。

英文摘要:

Concerning the low accuracy of identifying relevant Chinese events, a correlation recognition algorithm for Chinese news events based on Grey Relational Analysis( GRA) was proposed, which is a multiple factor analysis method.Firstly, three factors that affect the event correlation, including co-occurrence of triggers, shared nouns between events and the similarity of the event sentences, were proposed through analyzing the characteristics of Chinese news events. Secondly, the three factors were quantified and the influence weights of them were calculated. Finally, GRA was used to combine the three factors, and the GRA model between events was established to realize event correlation recognition. The experimental results show that the three factors for event correlation recognition are effective, and compared with the method only using one influence factor, the proposed algorithm improves the accuracy of event correlation recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679