针对中文新闻事件关联性识别准确率较低的问题,提出一种基于灰色关联分析(GRA)的中文新闻事件关联性识别算法,该算法是一种多因素分析法。首先,通过分析中文新闻事件的特性,提出三个影响事件关联性的因素,分别为触发词的共现性、事件的共享名词以及事件句的相似度;其次,对多个影响因素进行量化处理,计算每个影响因素的影响权值;最后,运用GRA将多个影响因素结合在一起,建立事件之间的灰色关联性分析模型,实现事件关联性识别。通过实验验证了三个影响因素对事件关联性识别的有效性,而且相对于只考虑单一影响因素的关联性识别算法,所提算法提高了事件关联性识别的准确率。
Concerning the low accuracy of identifying relevant Chinese events, a correlation recognition algorithm for Chinese news events based on Grey Relational Analysis( GRA) was proposed, which is a multiple factor analysis method.Firstly, three factors that affect the event correlation, including co-occurrence of triggers, shared nouns between events and the similarity of the event sentences, were proposed through analyzing the characteristics of Chinese news events. Secondly, the three factors were quantified and the influence weights of them were calculated. Finally, GRA was used to combine the three factors, and the GRA model between events was established to realize event correlation recognition. The experimental results show that the three factors for event correlation recognition are effective, and compared with the method only using one influence factor, the proposed algorithm improves the accuracy of event correlation recognition.