位置:成果数据库 > 期刊 > 期刊详情页
高分辨率遥感影像的支持张量机分类方法
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.4[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号430079
  • 相关基金:国家自然科学基金资助项目(40930532 41061130553); 中央高校基本科研业务费专项资金资助项目(3101016); 测绘遥感信息工程国家重点实验室专项科研经费资助项目
中文摘要:

针对高分辨率遥感数据分类多特征、小样本的特点,将训练样本像素邻域的数据立方以三阶张量表征,并提出了利用支持张量机对训练样本进行监督分类的模型和解法。实验结果表明,此方法能够利用少量的训练样本实现更优的分类精度。

英文摘要:

We propose a support tensor machine for remote sensing image classification.The training samples are represented as 3-order tensors with local neighbor information.Then the mathematical model and solution of support tensor machine are discussed in detail.A range of experiments demonstrate that the effectiveness of the proposed method can deliver a high classification rate with a small number of training samples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217