本项目拟研究伪抛物型方程,其特点是具有关于时-空混合导的高阶项.这类方程来源于裂隙多孔介质的渗流、非线性色散长波、粘弹性不可压缩流体等问题中广泛存在的阻性扩散过程,同时也可作为研究图像处理等问题中的非适定模型的有效的正则化逼近. 本项目旨在通过研究这类方程的若干定性问题,考察伪抛物粘性对解的性态的影响,从而揭示其与对应抛物及双曲模型解的性态的区别与联系,为真实模型的理论分析和数值计算提供一种更合理的逼近过程.拟研究死核、行波解、传播的Pinning/Depinning以及解的渐近行为等伪抛物型方程领域尚无完整结果的问题.伪抛物型方程本身的特有结构,尤其是当退化性、奇异性出现在高阶混合导项时,会为研究带来本质性困难,需要寻找新的研究思路.本项目的研究结果和方法将对解释有关物理现象提供重要参考,并在一定程度上丰富和完善偏微分方程的理论.
英文主题词pseudo-parabolic equation;critical exponent;traveling wavelet;periodic solution;