Minimax 方法是临界点理论的重要组成部分。针对不同的问题选取适当的集合(或映射)类构造极大极小值是研究的关键,突破性的工作常常由这种类的选取而产生。另外针对不同的问题建立合适的变分框架,是把研究深入下去的基础。近几年来研究具有临界Sobolev指数或带有Hardy项的椭圆方程越来越活跃,这类问题的难点在于相应的泛函已经失去了(P.S.)紧性条件。通过本项目的资助,我们对这一研究领域做了系统的归纳总结,如背景、理论知识与进展等,并且给出了一些新颖而富有意义的结果,进一步丰富和完善该领域。
英文主题词Minimax method; Variational method;Sobolev exponent;(P.S.)condition