二阶系统广泛产生于控制、振动等工程实际领域,在对其进行结构动力特性分析时,便会涉及到二阶系统的解耦问题,即寻找主坐标变换将三个系数矩阵同时对角化,其实现条件苛刻。虽然,数值代数领域基于Lancaster结构研究二阶系统解耦已取得一定成果,但相关算法的保结构和保谱等性质的实现仍需进一步完善提高。本项目针对基于Lancaster结构二阶系统解耦方法中的保持问题进行深入研究,以求进一步完善已有解耦算法,并为其在工程实践中应用奠定基础。首先,研究解耦变换的有效数值求解算法及解耦变换的保对称性。解耦变换描述了系统解耦前后的一种非线性关系,研究其求解及性质刻画对工程应用具有重要意义;其次,研究解耦变换的保结构和保谱特性的刻划与实现。要使解耦有意义就必须保谱,而要保谱就必须保结构,因此,研究解耦变换的这两个保持性质至关重要;最后,研究一类齐次Sylvester方程非奇异解的存在、求解算法及解的保对称性。
Lancaster structure;structure preserving transform;isospectral transformation;load identification; Sylvester equation
二阶系统解耦可以将一个多自由度系统转化成多个无关的单自由度子系统,它不仅为系统响应的计算提供有效方法,而且为系统的定量分析带来极大的便利,因此,研究二阶系统解耦具有重要意义。项目组针对基于Lancaster结构的二阶系统解耦方法中涉及到的保持问题进行了研究,进一步完善了现有算法,并将其应用到动载荷时域识别中。首先,利用Jordan三元组理论和标准三元组理论给出了保结构变换满足的一种形式,并利用适当的参数选取得到期望的解耦变换。其次,利用同谱解耦系统的构造来实现算法的保持性质,特别研究了当特征值亏损时,二阶系统的解耦判断条件和实解耦系统的构造。最后,提出一种基于二阶系统解耦的动载荷时域识别方法,通过理论推导建立数学模型,将基于Lancaster结构的二阶系统解耦方法应用到工程实际中,改进现有识别算法的不足。