位置:立项数据库 > 立项详情页
非均匀介质平面结构中Casimir效应的计算及对克服粘附问题的量化研究
  • 项目名称:非均匀介质平面结构中Casimir效应的计算及对克服粘附问题的量化研究
  • 项目类别:青年科学基金项目
  • 批准号:11101203
  • 申请代码:A010902
  • 项目来源:国家自然科学基金
  • 研究期限:2012-01-01-2014-12-31
  • 项目负责人:熊春
  • 依托单位:南昌大学
  • 批准年度:2011
中文摘要:

将吸引的Casimir力变换为稳定排斥的Casimir力,是解决微纳器械中粘附问题的重要方法。申请者前期报道一维介电系数指数衰减模型的Casimir效应为排斥力,是目前唯一可以得到解析表达式的非均匀介电系数排序控制模型。本项目拟构建非均匀介质平面结构中的二维介电系数排序控制模型,定量和定性分析Casimir力随该模型变化的规律。一方面,在进一步推导二维介电系数指数衰减模型的Casimir效应解析表达式基础上,数值计算并验证其它二维介电系数排序控制模型中,排斥的Casimir力存在和数量级预测的问题,建立非均匀介质平面结构中Casimir效应的数值计算程式。另一方面,通过研究,揭示不同非均匀介电系数对吸引或排斥的Casimir效应的量化影响规律,为进而解决吸引的 Casimir力产生的粘附问题、开展实际物体的Casimir效应计算工具和稳定空间结构的微纳器械设计等方面的研究打下理论基础。

结论摘要:

Casimir力产生于量子真空的随机起伏。目前为止,只在非常简单的理论模型中对它有一定了解。由于Casimir效应在微纳器械设计中非常重要,尤其是这些微小装置的稳定性,因此,需要更深层面的研究复杂系统中的Casimir效用。所得到的有限计算结果表明对于均匀介质,在最简单的平面结构中,Lifshitz 理论可以给出有效收敛的Casimir力,这也经实验所证实。而在其它一些几何构型中,情况则要复杂得多。虽然由Lifshitz等人建立的基础理论是从非均匀耗散介质材料出发,但是已有文献中具体计算的Casimir力都是考虑的均匀介质材料,而真正计算了非均匀介质材料中Casimir力的范例几乎没有。据此,本项目着重研究Lifshitz理论在非均匀介质材料中的运用,并指出其重整化部分存在的非物理解释项问题。我们主要考虑了包含各类型非均匀介电系数和磁导系数的电介质模型,即Lifshitz理论在介电系数和磁导系数排序控制模型中的运用及其存在的问题。在该类模型中,中间部分介质材料的介电系数和/或磁导系数不再与横向坐标无关,而是随其变化而变化的函数。同时,基于先前未预见的发散问题,本项目还引进了更为复杂的几何结构(圆柱体、球体等),并这发现对于均匀介质而言,Lifshitz 理论中再次发散问题的产生,尤其是重整化方法的有效性,严格依赖于具体的几何构型。


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 5
  • 2
  • 0
  • 0
  • 0
相关项目
期刊论文 12 会议论文 3
熊春的项目