基于人类感知和认知方法,借鉴经典机器学习理论和技术,在公理模糊集理论框架内,应用测度论、格论、拓扑学、组合学和现代数据统计分析方法建立一套系统且较完善的模糊机器学习理论和方法。其算法不仅可直接应用许多深刻抽象的数学理论和计算机进行深入地研究、分析和处理,而且可用人类自然语言解释和思维逻辑理解与分析。这一方面克服目前模糊机器学习面临"黑盒子"问题,另方面通过模仿人类感知和认知,建立能够用自然语言、思维逻辑和经验直接解释的基于数据的知识结构。其研究成果在数据可解释性建模、基于数据驱动的控制、知识发现与表示等方面具有重要的理论和应用价值。最后相应的算法将应用机器人进行验证并提高其避让障碍物和路径规划的智能水平和速度。
英文主题词Machine Learning; Fuzzy Concept Representation; Fuzzy Logical Operations; Axiomatic Fuzzy Sets Theory