HIV-1 p24抗原检测能显著缩短HIV感染检测窗口期,但酶免法操作繁琐,发光法设备要求高,均难以满足现场快速筛查要求。电化学传感器以其简便、快速、准确、价廉的特点,成为 p24抗原检测技术发展新方向。作为传统电化学传感器识别元件的抗体在环境中易失活,且普通材料修饰电极电传导性能有限,鉴于这些缺点,我们在前期免疫传感芯片研究工作基础上,拟用SELEX技术筛选出亲和力强、特异性高、性质稳定的HIV-1 p24抗原核酸适体,构建胭脂红酸电化学活性-非活性开关适体信标(CAs-AMB)作为识别元件,配合新型纳米材料-石墨烯复合物作为修饰的工作电极,并通过磁性富集方法固定CAs-AMB,构建一种新型的HIV-1 p24抗原检测电化学传感器,并深入解析该传感器液相响应模式,完成其检测性能的临床评价,为HIV-1 p24抗原快速现场筛查提供一种简便、灵敏、准确的新方法。
HIV-1 p24 antigen;glucose meter;molecular beancon;electrochemical biosensor;rapid testing
HIV-1 p24抗原检测能显著缩短HIV感染检测窗口期,但普通酶联免疫试剂盒操作时间长,发光法设备要求高,均难以满足现场快速筛查要求。电化学传感器以其简便、快速、准确、价廉的特点,成为p24抗原检测技术发展新方向。由于本项目是非连续资助项目,资助时间及金额有限,完成申请书中全部研究目标及研究内容存在较大困难,因此在项目计划书中我们已对研究方案进行了调整。在完成HIV-1 p24电化学免疫分析方法研究的同时,成功研发基于信标技术的HIV-1电化学基因传感检测方法,达到了HIV-1快速筛查的目的。(1) 便携式血糖仪是商品化最早、市场应用最成熟的生物传感器。其不仅可用于葡萄糖的检测,还可通过蔗糖转化酶水解底物产生葡萄糖的方法将其与蛋白类标志物的酶联免疫检测联系起来。事实上淀粉酶水解产生葡萄糖是工业上更为成熟的葡萄糖制备工艺,以此方式实现蛋白类标志物在便携式血糖仪平台上的检测是HIV-1 p24抗原免疫传感系统研制的新思路。由于HIV-1 p24抗原的酶联免疫试剂盒价格昂贵,我们先以AFP作为模拟靶物质进行电化学酶联免疫传感方法的验证,成熟之后再将HIV-1 p24抗原试剂引入。本项目以糖化酶作为夹心免疫反应中检测抗体的酶标记物,利用纳米金作为糖化酶和检测抗体的载体,成功构建了基于葡萄糖检测的电化学酶联免疫传感方法,检测模拟靶蛋白的线性范围为0.05-100 ng/mL。继而利用耐热α-淀粉酶和糖化酶的协同水解作用提高糖化酶的水解效率,增加单位时间葡萄糖产量,从而实现了便携式血糖仪对蛋白类生物标志物的酶联免疫检测,该方法线性范围为0.1-100 ng/mL。(2)本项目对HIV基因传感检测方法进行了研究构建HIV-1电化学分子信标(CAs-MB)并验证其结构及功能,利用二维碳纳米材料graphene导电性能强、比表面积大的优点和nafion能够增加石墨烯的可溶性,并可将其稳定固定于电极表面的特点,制成nafion–graphene复合物膜。用此膜修饰SPCEs,构成超灵敏电化学微电极nafion–graphene/SPCEs作为本项目的工作电极,构建出针对HIV-1的电化学基因传感系统。本系统对HIV-1ga基因目的序列的检测在40nmol/L-2.56μmol/L浓度范围内呈线性,检出限达5nmol/L。本项目共发表SCI论文3篇,申请国家发明专利1项。