非线性随机动力学系统的平稳响应已经得到了深入系统的研究,然而相当部分涉及国家安全的随机动力学系统,例如运载火箭等,更加关注其瞬态响应的分析。瞬态响应是这些系统设计、安全评估及性能控制的重要依据,因此研究非线性随机动力学系统的瞬态响应具有重要的理论意义及工程应用价值。本项目以非共振/共振单/多自由度非线性随机系统为研究对象,研究随机系统的近似瞬态解,并考虑了外共振、时滞、粘弹性、滞迟等重要因素的影响。基本研究方法是推广基于广义谐和函数的随机平均法,对非共振与共振情形分别得到相应的平均Fokker-Planck-Kolmogorov方程;将上述方程的解表示为指数形式的复合函数,对非共振情形,将内函数近似表示为变系数的多元正交基函数的级数和,对共振情形,则采用变系数的两组不同的基函数的级数和;应用Galerkin法将上述问题转化为一阶线性常微分方程组问题,进而得到系统的近似瞬态响应。
英文主题词transient response;nonlinear stochastic dynamical system;stochastic averaging;Galerkin method;Mellin transformation