深冷处理能显著改善材料的力学性能,是近年来为业界广泛认可的材料改性及强化的工艺程序。目前针对材料深冷处理的研究仅停留在宏观性能上的表现,提出的机理也只是对宏观性能变化结果的猜测。由于深冷处理机理尚未澄清,工程上对深冷处理的应用十分有限。本项目拟通过对深冷处理过程中微观结构分析、物性测试和相变驱动力讨论,提出与深冷处理过程相对应的驱动力关系以及符合深冷条件下温度-应力诱导耦合作用下的相变机理和析出机制,建立深冷条件下温度-应力诱导耦合模型,揭示深冷处理过程中的微观结构演化规律及相变机理。同时,借助计算机模拟与仿真技术,建立计算模型,对高碳高合金钢深冷处理工艺进行计算机仿真,掌握各种不同工艺参数和影响因素对深冷处理过程的影响规律,并对深冷处理工艺进行预测和组织性能进行评估,从而优化出深冷处理工艺方案,使工艺更加高效合理,以期对深冷处理的应用和工艺的制定提供理论指导。
Cryogenic treatment;Phase transformation;Carbide;Coupling model;Simulation and emulation
深冷处理由于其清洁、高效而辅助应用于高碳高合金钢的热处理过程以增强材料的力学和机械性能,近年来已被业界所广泛认可。但目前得到的深冷处理机制都是材料在室温下宏观表现的反推,存在一定缺陷,严重限制了深冷处理的应用。例如,深冷处理能否促使残留奥氏体完全转变为马氏体;低温下是否有等温马氏体形成;低温下碳原子是否有扩散行为;深冷处理过程中温度场、组织场和应力场的动态演变不能采用传统的实验方法检测。本项目对高碳高合金钢SDC99在-80℃至-196℃温度范围内,进行了不同温度、不同保温时间、不同回火与深冷次序的深冷处理,摸索出最佳深冷处理工艺参数;测试上述深冷处理工艺下的宏观力学性能,包括硬度、冲击韧性、摩擦磨损性能,采用SEM、XRD、TEM、高温/低温实时动态模量与内耗测试系统,结合3DAP研究了深冷处理对残留奥氏体数量、形态、分布的影响,明确了低温下的等温马氏体相变转变时间,建立了宏观性能与微观组织演化的对应关系。力学实验及摩擦磨损实验结果表明对于SDC99钢而言,最优深冷处理温度为-196℃,最优时间为12小时以上,最佳工艺顺序是先回火再深冷处理。经1030℃淬火+210℃回火2小时+(-196℃深冷24小时)+ 210℃回火2小时的最优深冷处理工艺处理后,在300N的载荷下摩擦时试样的耐磨性较常规热处理试样提高了43.8%。XRD结果表明,深冷处理可使SDC99马氏体基体的正方度下降,降低马氏体中C的过饱和度,其中淬火后直接深冷处理对于减轻晶格畸变最为有利。小角XRD衍射结果证实-130℃保温时生成等温马氏体。SEM和TEM结果表明,常规热处理后的残留奥氏体呈块状分布在基体中,深冷处理后的残留奥氏体呈薄膜状分布于碳化物周围,深冷处理不能使残留奥氏体完全转变,约有3%的残留奥氏体保留在基体中,这与DEFORM软件所模拟的结果良好吻合。3DAP结果表明,SDC99经1030℃淬火至室温,碳原子大部分均匀分布,仅出现微弱偏聚;经-196℃×8 h深冷处理后,C原子偏聚于新生孪晶马氏体晶界,在由深冷温度恢复到室温过程中,C原子进一步偏聚,形成5~10 nm厚的平行片状偏聚区,但并未以碳化物形式析出;经210℃×2h回火后,深冷处理时偏聚于新生孪晶马氏体晶界的C原子或进一步富集形成厚度约10 nm 的富C相,或与Cr和Mo等合金元素形成M23C6碳化物沉淀析出,该纳米级碳化物